Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 10, 2026
- 
            We prove and extend the longest-standing conjecture in ‘ -Catalan combinatorics,’ namely, the combinatorial formula for conjectured by Loehr and Warrington, where is a Schur function and is an eigenoperator on Macdonald polynomials. Our approach is to establish a stronger identity of infinite series of characters involvingSchur Catalanimals; these were recently shown by the authors to represent Schur functions in subalgebras isomorphic to the algebra of symmetric functions over , where is the elliptic Hall algebra of Burban and Schiffmann. We establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT polynomials, with terms indexed by configurations of nested lattice paths callednests, having endpoints and bounding constraints controlled by data called aden. The special case for proves the Loehr-Warrington conjecture, giving as a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general, for our formula implies a new version of the Loehr-Warrington conjecture. In the case where each nest consists of a single lattice path, the nests in a den formula reduce to our previous shuffle theorem for paths under any line. Both this and the Loehr-Warrington formula generalize the shuffle theorem proven by Carlsson and Mellit (for ) and Mellit. Our formula here unifies these two generalizations.more » « lessFree, publicly-accessible full text available June 10, 2026
- 
            Abstract We give an explicit raising operator formula for the modified Macdonald polynomials$$\tilde {H}_{\mu }(X;q,t)$$, which follows from our recent formula for$$\nabla $$on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions$$\tilde {H}^{1,n}(X;q,t)$$that we call$$1,n$$-Macdonald polynomials, which reduce to a scalar multiple of$$\tilde {H}_{\mu }(X;q,t)$$when$$n=1$$. We conjecture that the coefficients of$$1,n$$-Macdonald polynomials in terms of Schur functions belong to$${\mathbb N}[q,t]$$, generalizing Macdonald positivity.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract. We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies in the algebra of symmetric functions embedded in the elliptic Hall algebra of Burban and Schiffmann. As a corollary, we deduce an explicit raising operator formula for the nabla operator applied to any LLT polynomial. In particular, we obtain a formula for ∇msλ which serves as a starting point for our proof of the Loehr-Warrington conjecture in a companion paper to this onemore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available